we pave the way for biotechs

News

Die kontinuierliche Evolution von Krebszellen

03.09.2020 / Ein neuer Algorithmus zeigt, dass die Zellen eines Tumors fortlaufend ihr Genom umgestalten – eine Evolution im Schnelldurchlauf, die bei zahlreichen Tumorarten vorkommt. Doch welche Veränderungen nützen dem Tumor und tragen zur Metastasierung bei? Sie zu erkennen, könnte zu neuen Therapien beitragen.

mdcnews20200903

3D-Struktur einer Melanomzelle, gewonnen durch Ionenabrieb-Rasterelektronenmikroskopie. Foto: Sriram Subramaniam, National Cancer Institute, National Institutes of Health, Lizenz: CC BY-NC 2.0

In einigen Zellen gewinnt und verliert ein Tumor große Abschnitte von Chromosomen, in anderen Zellen jedoch nicht. Dieser Prozess kann ein Hinweis auf fortlaufende Evolution und die Selektion bevorzugte Merkmale sein. Zu diesem Schluss kommt ein Forschungsteam des Max-Delbrück-Centrums für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC), des Francis Crick Institute und des University College London. Wie die Forschenden in der Fachzeitschrift Nature berichten, fanden sie derartige Hinweise bei 22 Tumorarten, darunter Brust-, Darm- und Lungenkrebs.

„Das Ausmaß der kontinuierlichen strukturellen Evolution in diesen Krebsgenomen ist viel größer, als wir ursprünglich gedacht hatten, und es ist auch größer als es die Community gewöhnlich annimmt“, sagt Dr. Roland Schwarz, Leiter der MDC-Arbeitsgruppe „Evolutionäre und Krebsgenomik“ und einer der Hauptautoren der Studie. 

Begünstigt werden dabei anscheinend solche Varianten, durch die die Krebszellen große Chromosomenabschnitte mit vorteilhaften Genen hinzugewinnen oder öfter kopieren können. Genabschnitte, die den Tumor unterdrücken könnten, gehen dagegen verloren. „Das ist zwar intuitiv einleuchtend, aber es wurde noch nie zuvor nachgewiesen, dass dies kontinuierlich bei so vielen Tumorarten passiert“, sagt Schwarz.

Mutter oder Vater zuerst?
Roland Schwarz und Tom Watkins, Erstautor der Studie und Doktorand am Francis Crick Institute, den Schwarz mitbetreut, haben in den letzten fünf Jahren gemeinsam ein Verfahren entwickelt, das diese umfassenden Mutationen detaillierter beschreiben kann. Die Veränderungen werden als somatische Kopienzahl-Änderungen bezeichnet und können Chromosomenarme oder sogar ganze Chromosomen umfassen. Sie sind also weitaus größer als Punktmutationen in einzelnen Genen. Die Forschenden interessierte insbesondere, ob Veränderungen an der mütterlichen oder väterlichen Kopie eines Chromosoms oder gar an beiden vorliegen und in welcher Reihenfolge sie auftreten.

„Wenn wir das Ausmaß der kontinuierlichen Instabilität der Chromosomen und die daraus resultierende Heterogenität der Kopienzahl verstehen, könnte das zukünftige Therapieansätze beeinflussen“, sagt Watkins.

Mithilfe eines neuen Algorithmus namens „Refphase“ und einer statistischen Analyse gelang es den Forschenden, diese Detailgenauigkeit in den Haplotypen zu erreichen. Gemeinsam mit Kolleg*innen wandten sie dieses Verfahren auf 1.421 Proben aus 394 Tumoren von 22 Tumorarten an. Entscheidend dabei war, dass diese Proben aus mindestens zwei verschiedenen Teilen des Tumors stammten, sodass die Forscher*innen die Unterschiede zwischen den einzelnen Regionen vergleichen konnten. 

„Solche Datensätze findet man immer noch recht selten. Es war daher für mich sehr spannend, mit der größten Datensammlung unterschiedlichster Krebsarten zu arbeiten, die auch Daten aus verschiedenen Bereichen der Tumoren umfasst“, sagt Marina Petkovic, Co-Autorin der Studie und Doktorandin in Schwarz’ Labor, das Teil des Berliner Instituts für Medizinische Systembiologie (BIMSB) des MDC ist.

Die Forscher*innen fanden eine große Variabilität chromosomaler Gewinne und Verluste in den Zellen aus verschiedenen Tumorteilen – und zwar bei allen untersuchten Tumorarten.

Ein weit verbreitetes Ungleichgewicht
Das Team stellte auch fest, dass in einem Tumorteil ein Gewinn oder Verlust oft nur auf der mütterlichen Kopie des Chromosoms auftrat, während im anderen Teil des Tumors der Gewinn oder Verlust nur auf der väterlichen Kopie zu finden war. Dieses Phänomen, das Schwarz und seine Kollegen erstmals 2017 in einer Studie beschrieben, wird als gespiegeltes subklonales Allel-Ungleichgewicht („Mirrored Subclonal Allelic Imbalance“ oder MSAI) bezeichnet. „Diese MSAI-Ereignisse finden sich in vielen Tumorarten. Es gibt sie nahezu überall“, sagt Schwarz.

Dieses Ungleichgewicht deutet auf eine getrennte, parallel stattfindende Evolution hin – es legt also Selektion nahe. Ob die gewonnenen oder verlorenen Chromosomen-Abschnitte tatsächlich zur Metastasierung des Tumors beitragen oder nur zufällig auftreten, müssen weitere Untersuchungen zeigen. Fest steht jedenfalls: Die Forschungsergebnisse zeigen mit großer Beweiskraft, dass sich Krebszellen ihre Genome kontinuierlich und in großem Maßstab umgestalten. Dieser Vorgang wird auch chromosomale Instabilität genannt.

Die Befunde greifen eine laufende Debatte auf dem Gebiet der Krebsgenomik auf. Einige Wissenschaftler*innen argumentieren, dass es zahlreiche evolutionäre Veränderungen gibt, wenn sich der Tumor gerade erst bildet und das Genom später relativ stabil bleibt. Andere wiederum – darunter Schwarz und seine Kolleg*innen – vermuten, dass diese Veränderungen über den gesamten Lebenszyklus eines Krebs hinweg anhalten. „Unser Ansatz erbringt substanzielle Nachweise für eine kontinuierliche chromosomale Instabilität – und zwar so detailliert, wie es bislang nicht möglich war“, sagt Schwarz.

Schwarz und sein Team führen derzeit Beta-Tests ihres Algorithmus für die Veröffentlichung als R-Paket durch. Mit einer solchen Open-Access-Software zur Datenanalyse können auch andere Wissenschaftler*innen in diesem Bereich das Verfahren nutzen.

Weiterführende Informationen
Pressemitteilung auf der MDC-Website lesen

Arbeitsgruppe von Dr. Roland Schwarz

Pressemitteilung: „Im Detail erfasst: Mutierte DNA in Krebszellen“

Literatur
Tom Watkins et al. (2020): „Pervasive Chromosomal Instability and Karyotype Order During Tumour Evolution“, Nature, DOI: 10.1038/s41586-020-2698-6

Das Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC) wurde 1992 in Berlin gegründet. Benannt wurde es nach dem deutsch-amerikanischen Physiker Max Delbrück, der 1969 mit dem Nobelpreis für Physiologie und Medizin ausgezeichnet wurde. Das MDC untersucht molekulare Mechanismen, um die Entstehung von Krankheiten zu verstehen und sie so besser und wirksamer diagnostizieren, verhindern und bekämpfen zu können. Dabei arbeitet das MDC mit der Charité – Universitätsmedizin Berlin und dem Berlin Institute of Health (BIH) sowie mit nationalen Partnern wie dem Deutschen Zentrum für Herz-Kreislaufforschung e. V. und zahlreichen internationalen Forschungseinrichtungen zusammen. Über 1.600 Mitarbeiter und Gäste aus fast 60 Ländern arbeiten am MDC, knapp 1.300 davon in der wissenschaftlichen Forschung. Das MDC wird zu 90 % vom Bundesministerium für Bildung und Forschung und zu 10 % vom Land Berlin finanziert und ist Mitglied der Helmholtz-Gemeinschaft Deutscher Forschungszentren. www.mdc-berlin.de 

zurück zur Liste

MDC
FMP
Charite
Campus Berlin-Buch
Berlin Buch