we pave the way for biotechs

News

Skelettmuskelschwund bei Herzschwäche – MDC- und Charité-Forscher klären Mechanismus auf

10.08.2015 / Es ist paradox: Patienten mit fortgeschrittener Herzschwäche (Herzinsuffizienz) verlieren an Skelettmuskelmasse, während sich ihr Herzmuskel dagegen vergrößert, um den Körper noch ausreichend mit Blut und damit mit Sauerstoff zu versorgen. Seit langem ist bekannt, dass bei diesem Prozess ein Eiweiß, das Angiotensin II, eine unrühmliche Rolle spielt, jedoch war bisher nicht klar, wie dieser Prozess genau vor sich geht. In siebenjähriger Puzzlearbeit ist es jetzt dem Biologen Dr. Philipp Du Bois und dem Kardiologen PD Dr. Jens Fielitz vom Experimental and Clinical Research Center (ECRC) des Max-Delbrück-Centrums für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC) und der Charité – Universitätsmedizin Berlin in Zusammenarbeit mit dem Molekularbiologen Prof. Eric N. Olson vom Southwestern Medical Center der University von Texas, Dallas, USA, gelungen, den Vorgang zu entschlüsseln und neue Angriffspunkte für die Therapie aufzuzeigen (Circulation Research, doi: 10.1161/CIRCRESAHA.114.305393)*.

Herzinsuffizienz zählt zu den häufigsten Todesursachen in den industrialisierten Ländern. Die Ursachen für diese Krankheit sind vielfältig. Dazu gehören Bluthochdruck, Erkrankung der Herzkranzgefäße, Diabetes, starkes Übergewicht (Adipositas) und Alter. „Dank der verbesserten medizinischen Versorgung können wir heute Patienten mit Herzinsuffizienz gut behandeln und deren Prognose verbessern, das heißt, die Überlebenszeit verlängern. Das bedeutet aber auch, dass wir zunehmend Patienten im fortgeschrittenen Stadium dieser Erkrankung haben. Sie leiden an Skelettmuskelschwund und nehmen stark ab, wodurch sich ihr Zustand zunehmend verschlechtert und lebensbedrohlich wird. Leider können wir diese Begleiterkrankung nicht gut behandeln“, erläutert Dr. Fielitz. Der Kardiologe vom Virchow-Klinikum der Charité leitet am ECRC in Berlin-Buch eine unabhängige Projektgruppe zur Proteinregulation im Herz- und Skelettmuskel.

Angiotensin II löst Muskelschwund aus

Bisher war bekannt, dass die Aktivierung des so genannten Renin-Angiotensin-Systems (RAAS) bei Patienten mit Herzinsuffizienz zum Abbau der Skelettmuskeln führt. Das komplizierte System aus Hormonen und Enzymen reguliert normalerweise den Wasser- und Salzhaushalt des Körpers sowie den Blutdruck. Patienten mit Herzinsuffizienz haben erhöhte Werte von einem der Mitspieler dieses Systems im Blut, dem Angiotensin II.

Bekannt war auch, dass es dieses Angiotensin II ist, das den Muskelschwund auslöst. Es stellt die Häckselmaschine des Körpers zum Abbau von Proteinen (Ubiquitin-Proteasom-System, UPS) an, indem es ein Muskelenzym bildet, das es quasi als Schalter einsetzt. Sobald das Muskelenzym, das die Forschung kurz MuRF1 nennt, aktiviert ist, baut die UPS-Maschinerie bei den Patienten das Muskeleiweiß ab, wodurch die Muskeln immer dünner und schwächer werden.

Bekommen die Patienten als Medikament sogenannte ACE-Hemmer, verringert sich bei ihnen der Abbau der Skelettmuskeln. ACE-Hemmer blockieren die Entstehung von Angiotensin II und werden üblicher Weise in der Behandlung von herzinsuffizienten Patienten eingesetzt. „ACE-Hemmer können den Muskelschwund zwar effektiv, aber nicht vollständig hemmen. Und oft kommt es nach fünf bis zehn Jahren zum Therapieversagen“, weist Dr. Fielitz auf die Problematik hin.

Neuen Regulator und Signalweg entdeckt

Hinzu kommt, dass der genaue Signalweg, über den Angiotensin II die Bildung von MuRF1 erhöht, bisher nicht ganz verstanden war. Doch die Kenntnis darüber ist unerlässlich, will man neue Ansätze für eine verbesserte Therapie finden. Dr. Fielitz und seine Mitarbeiter wollten deshalb wissen, wie genau Angiotensin II die Bildung von MuRF1 in Muskelzellen steigert und welcher Signalweg dieses Muskelenzym steuert.

Dazu durchforsteten sie humane Skelettmuskelbibliotheken und sichteten über 250 000 sogenannte cDNAs, mit deren Hilfe sie neue Steuerungsmoleküle (Transkriptionsfaktoren) für das Muskelenzym zu finden hofften. Und sie wurden fündig. Sie entdeckten den Transkriptionsfaktor EB (TFEB). Er bindet an spezielle Steuerelemente im MuRF1-Gen und schaltet dadurch die Produktion dieses Muskelenzym an. Die Forscher konnten zeigen, dass TFEB die Expression von MuRF1 in Muskelzellen um das 70fache erhöht. Damit ist TFEB der stärkste bisher bekannte Aktivator der MuRF1-Expression und ein Schlüsselelement für den Muskelabbau.

Doch gibt es noch weitere Schlüsselelemente in diesem komplexen Regelkreis, der letztlich durch das Angiotensin II angestoßen wird. Denn die Aktivität eines so wichtigen Transkriptionsfaktors wie TFEB muss durch ein äußerst fein abgestimmtes Netzwerk von Proteinen in Schach gehalten werden. Eben dieses Netzwerk das die Aktivität von TFEB reguliert, haben die Forscher entdeckt und im Detail beschrieben.

Eines dieser Regulationsproteine ist das Enzym HDAC5. Es hemmt die Aktivität des Transkriptionsfaktors TFEB. Dadurch wird weniger MuRF1 gebildet und so der Muskelabbau verringert. Das zweite Enzym, die Proteinkinase D1, die durch Angiotensin II aktiviert wird und dann in den Zellkern wandert, wirft das schützende Enzym HDAC5 aus dem Zellkern heraus und schaltet dadurch TFEB im Zellkern an. Das führt zu einer vermehrten Bildung von MuRF1 und löst den muskulären Proteinabbau aus.

Die Proteinkinase D1 ist damit ein weiterer böser Spieler in diesem Prozess, den die Forscher sowohl in Muskelzellkulturen als auch in Mäusen untersucht hatten. „Mit der Kenntnis dieses neuen Signalwegs können wir möglicherweise in Zukunft den Skelettmuskelabbau bei Patienten mit schwerer Herzinsuffizienz an verschiedenen Punkten zu verhindern suchen“, hofft Dr. Fielitz.

*Angiotensin II Induces Skeletal Muscle Atrophy by Activating TFEB-Mediated MuRF1 Expression

Philipp Du Bois1, Cristina Pablo Tortola1, Doerte Lodka1, Melanie Kny1, Franziska Schmidt1, Kunhua Song2,3, Sibylle Schmidt1, Rhonda Bassel-Duby3, Eric N. Olson3, Jens Fielitz1

1Department of Molecular Cardiology, Experimental and Clinical Research Center (ECRC), a Cooperation between Max-Delbrück-Centrum and Charité -Universitätsmedizin Berlin, Campus Buch, Berlin, Germany; 2Current address: University of Colorado, Anschutz Medical Campus, Denver, USA, and; 3Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.

Quelle: MDC

zurück zur Liste

MDC
FMP
Charite
Campus Berlin-Buch
Berlin Buch