we pave the way for biotechs

News

Eine Bremse gegen epileptische Anfälle in Nervenzellen

26.05.2015 / In jedem Augenblick werden an Billiarden Synapsen unseres Gehirns chemische Signale erzeugt, die einzelnen Nervenzellen feuern dabei bis zu 1000 mal in der Sekunde. Wie ihnen diese Höchstleistung gelingt ohne dabei epileptische Anfälle zu erzeugen, haben Wissenschaftler am Leibniz-Institut für Molekulare Pharmakologie in Berlin nun ein Stück weit aufgeklärt. Das Ergebnis könnte zu einem besseren Verständnis nicht nur der Epilepsie, sondern auch anderer neurologischer Erkrankungen wie der Alzheimerschen Krankheit beitragen.

Bremse

Die Synapse ist die Verbindung zwischen zwei Nervenzellen und beinhaltet Vesikel gefüllt mit Neurotransmittern, die essentiell für die Signalweitergabe sind. Sie verschmelzen schnell mit der Zelloberfläche, entlassen die Neurotransmitter und müssen schnell und präzise recycelt werden, um ein Ungleichgewicht und neurologische Störungen zu verhindern. Urheber: Alexandr Mitiuc, fotolia

Mit jedem elektrischen Impuls schüttet eine Nervenzelle Neurotransmitter in den synaptischen Spalt aus und trägt so das Signal weiter. Sie hält dafür einen Vorrat an Neurotransmittern bereit, die in winzige Membranbläschen (Vesikel) verpackt sind und auf Kommando mit der äußeren Membran verschmelzen. Um aber Sinneswahrnehmungen und kognitive Vorgänge in ihrer ganzen Bandbreite zu ermöglichen, werden die einzelnen Nervenzellen von Hunderten Stromstößen pro Sekunde durchpulst. Sie müssen daher nicht nur in hohem Tempo Neutransmitter ausschütten, sondern die Vesikel auch genauso schnell wieder recyceln. Wie dieser Vorgang so unglaublich schnell und präzise gelingt, wird von Neurowissenschaftlern und Zellbiologen seit Jahren intensiv erforscht.

Die Gruppe um Volker Haucke fand nun heraus, dass Wirbeltiere im Lauf der Evolution dafür ein Recyclingsystem entwickelt haben, bei dem unabhängig voneinander funktionierende Proteine den lebenswichtigen Prozess absichern. Die Wissenschaftler entwickelten dafür verschiedene Mausmodelle, denen die Sortierproteine (Stonin2 und SV2A/B) fehlten. Erst als alle drei Proteine ausgefallen waren, funktionierte das Recycling nur noch sehr eingeschränkt und Nervenreize wurden nur stark abgeschwächt weitergeleitet. Die Mäuse hatten motorische Störungen und epileptische Anfälle, weil die Funktion der häufig feuernden hemmenden Synapsen durch das gestörte Recycling besonders stark beeinträchtigt wird und damit die "Bremse" im Nervensystem verloren geht, die im gesunden Tier und auch beim Menschen epileptische Anfälle verhindert.

„Selbst geringe Störungen in der Signalübertragung können zu einem Ungleichgewicht im Gehirn und damit zu neurologischen Störungen führen“, erklärt die Erstautorin Natalie Kaempf. Mit der doppelten Sicherung könnten die Nervenzellen sich dagegen absichern. Eines der in der Arbeit untersuchten Proteine (SV2A) ist auch der Angriffspunkt für ein bekanntes Epilepsie-Medikament, dessen Wirkmechanismus bislang noch kaum verstanden ist. Eine andere Arbeit weist zudem darauf hin, dass es auch an der Entstehung der Alzheimer-Erkrankung beteiligt ist. Die Erforschung des Vesikel-Recyclings könnte somit helfen, die Entstehung neurologischer Erkrankungen besser zu verstehen.

Kaempf, N., Kochlamazashvili, G., Puchkov, D., Maritzen, T., Bajjalieh, S.

M., Kononenko, N. L. and Haucke, V. (2015) Overlapping functions of stonin

2 and SV2 in sorting of the calcium sensor synaptotagmin 1 to synaptic vesicles. Proc Natl Acad Sci, MS# 2015-01627R

 

Kontakt:

Volker Haucke Ph.D.

Professor of Molecular Pharmacology

Leibniz Institut für Molekulare Pharmakologie

Robert-Roessle-Strasse 10, 13125 Berlin, Germany and CharitéCrossOver (CCO) Virchowweg 6, 10117 Berlin, Germany

E-mail: haucke@fmp-berlin.de

zurück zur Liste

MDC
FMP
Charite
Campus Berlin-Buch
Berlin Buch